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Stochastic Effects on the Isothermal Explosion 
Arising in the Oxidation of Iron (lI) 
by Nitric Acid 
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The oxidation of ferrous ion by nitric acid provides us with an example of an 
isothermal chemical explosion. We propose a chemical scheme with only two 
independent variables capable of explaining the explosive behavior, and examine 
the behavior of the fluctuations during the explosion period. The analysis is 
based on the numerical integration of the time evolution equations 
corresponding to the first and the second moments of the probability dis- 
tribution of the number of particles of Fe 2+ and HNO2. During the time inter- 
val of explosion the fluctuations present a peak whose maximum value increases 
as the volume of the system decreases. Comparison with the results of deter- 
ministic analysis is performed. 

KEY WORDS:  Chemical explosion; stochastic analysis; nonlinear 
phenomena. 

1. I N T R O D U C T I O N  

Epstein et  al. ~) have proposed a reaction scheme, based on experimen- 
tal results obtained by spectrophotometric and potentiometric techniques, 
for the oxidation of ferrous ion at high nitric acid concentration. In this 
scheme the chemical system displays an explosive behavior in the form of a 
slow induction period suddenly interrupted by ignition. The latter is 
characterized by a sharp increase of the reaction rates, followed by a 
saturation to a final plateau value. 

Recently, some works ~2)-~5) showed the necessity to incorporate fluc- 
tuations in the study of the chemical explosion regime. In many instances 
the strength of the fluctuations is scaled by an inverse power of the particle 
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number of the system, and their effect is small. However, it has been poin- 
ted out that the quick evolution associated to the ignition process may 
counteract the scaling of the fluctuations which, even for relatively large 
systems, can attain values comparable to the mean values. Therefore, dur- 
ing the ignition step the system can display chaotic behavior dominated by 
stochastic effects. 

This paper is devoted to the study of the fluctuations associated to the 
oxidation of ferrous ion by nitric acid during the explosion period. Our 
analysis is based on a simplified version of the Epstein model, thanks to 
which the explosive behavior can be treated with a reduced number of 
variables. 

In Section 2, on the basis of the numerical discussion of the full 
Epstein model, we propose a simplified chemical scheme capable of 
explaining the explosive behavior. Section 3 is devoted to the deterministic 
analysis of this model. In Section 4 we obtain information on the impor- 
tance of the fluctuations by performing a numerical integration of the first 
and second moment equations associated to the simplified model. Dis- 
cussion of the results is contained in Section 5. 

2. THE M O D E L  

Epstein's model consists of the seven reactions depicted in Table I. 
Reactions R1, R2, and R3 describe the reduction of nitrate to nitric oxid by 
ferrous ion. Reaction R4 describe the formation of the FeNO 2+ inter- 
mediate complex, while reactions R5, R6, and R7 summarize the chemistry 
of the oxynitrogen species. 

With the initial conditions depicted in Table II, Fig. 1 summarizes the 
numerical integration of the deterministic evolution equations for the con- 
centrations of the chemical species in the model. The graphs presented in 
this figure show the following features: 

(i) After an induction step, the HNO2 and NO2 concentrations 
increase quickly reaching, in the neighborhood of a critical time 
to ~ 1440 s, practically their steady-state levels. 

(ii) The NO concentration increases to reach a peak value around 
to, from which it is suddenly decreased to its steady-state level. 

(iii) The FeNO 2§ concentration reaches a peak around to. The 
relation 

K4 [FeNO 2+ ] = ~ [-Fe 2+ ] [NO]  (2.1) 

is always fulfilled, and so the FeNO 2+ complex concentration 
serves as an indicator for the Fe 2+ and NO concentrations. 
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Fig. 1. Time evolution of the chemical specie concentrations obtained from numerical 
integration of the rate equations associated to Epstein's model (Table I) with initial values 
depicted in Table II. 
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Table II. Initial Concentrations Used in the Numerical 
Integration of Epstein's Model 
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[ Fe2* ]o = 0 .025M 
[ Fe3+ ] o = 0 

EFeNO 2 + ] o = 0 

[ N O ~  ] o = 1.0M 

[ H  + ] o = 1.0M 

[ H N O 2 ] o = 2 . 0 x  1 0 - 6 M  l [ H + ] o E N O 3 ] o = 2 . 0 x  10 6M 

[ N O 2 ] o -  K- s  [HNO2]o[H=]Io/2-9.0• 10 9M 
K5 

[ N O l o  ~:6 [ H N O 2 ] o  2 3.5 x 1 0 - 1 ~  
K_ 6 ~-NO23o 2 

(iv) The Fe 2+, N O 3 ,  and H + concentrations decrease 
monotonically with a rate which increases quickly in the 
neighborhood of to. The Fe 3+ concentration shows the inverse 
behavior. 

In order to introduce a simplified model describing this chemical 
explosion, we have realized, with the initial conditions of Table II, 
numerical trials in which some of the reactions in Epstein's model were dis- 
carded. These led us to the following conclusions for the role of each step: 

Reaction RI: The main effect of the forward reaction is to change 
slightly the explosion time to. The effect of the reverse reaction is negligible. 

Reaction R2: The forward reaction is negligible and the elimination of 
the reverse reaction changes the final concentration values slightly. 

Reaction R3: The forward reaction is essential to explain the 
explosion, but the terms with kinetic parameters ~c3~ and tc3c are hegligible 
for this phenomenom. The reverse reaction only changes the final steady- 
state values. 

Reaction R4: It displaces in a noticeable way the explosion time tc, 
but does not influence the explosive behavior. 

Reaction R5: This reaction is absolutely negligible in order to explain 
the explosion. 

Reaction R6: The forward reaction is negligible but the reverse reac- 
tion is essential to explain the explosion. 

Reaction R7: The forward reaction is essential to explain the explosive 
behavior and the reverse reaction is negligible. 

Therefore, the most simplified set of chemical steps which still provides 
a description for the explosive behavior must be based on the forward reac- 
tions of R3 and R7 and the reverse reaction of R6. 

With the notation 
X I  = F e  2+ X 2 = H N O  2 

X3 = NO X4 = N O 2  (2.2) 

A = NO 3 B = H + 
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we thus adopt the following scheme 

X1 + X2 + B - -  X3 

X3 + X4 2X2 

A + X3 + B - -  X2 + X4 

(2.3) 

Since the N O  3 and H § concentrations greatly exceed that of Fe 2§ (as 
is shown in Fig. 1) we shall consider that the concentrations of A (NO 3)  
and B (H +) remain constant and equal to 1.0 M. With this condition the 
kinetic parameters of the system (2.3) are 

K'I = K3b = 3.4 X 101M 2S-~ 

K~=K 6= 7.4 X 106 M - i s  -1 

K; = tc7EH +-1 = 5.0 x 10 -2 M-2s  - 1 

(2.4) 

The numerical integration of the rate equations associated to the 
system (2.3) with the same initial conditions to those imposed to Epstein's 
model leads to the graphs of Fig. 2. Comparison of Fig. 1 and Fig. 2 shows 
that the essential difference between our simplified model and the full 
Epstein model consists in a displacement of the explosion time tc, i.e., in 
our model the induction period has been reduced but the explosion itself is 
essentially described in a similar way. 

3. D E T E R M I N I S T I C  A N A L Y S I S  

The deterministic rate equations for the transient evolution of concen- 
trations in model (2.3) under from nonequilibrium initial conditions, can 
be written as 

d x  1 
m . 2 1 2 2  

dr 

d22 

dr 
-- 2122+2232-4+23 

d x 3  - - 

dr = X l X  2 - -  2 3 2 .  4 - -  2 3  

(3.1) 

d24 1( 
- - = ~ -  - 2324 --~ 23) & 
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Fig. 2. 
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Solution of the rate equations associated to the chemical scheme (2.3) with kinetic 
parameters given by (2.4) and the same initial conditions as Epstein's model. 

where we have in t roduced  the d imensionless  intensive var iables  2 1 ,  2 7 2 ,  2?3, 
a n d  2 4 

2 1 =  

2?3 = 

the d imensionless  t ime 

! t 
Kl_f l '~  1 2 2 = K I _  ~'t~ 2 

K~A K~A 

K t -- ! 
l - -x~3 2?4 = K2__ X 4  

K~A K~AB 

(3.2) 

= ~c'3ABt (3.3) 
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and the dimensionless parameter 

! m t 
= tq B/~c 2 (3.4) 

Xi, A, and/~ are the concentrations of the corresponding chemical species, 
and t is the time. 

We are dealing with a four-variable nonlinear phenomenom whose 
steady-state will be investigated first. 

Taking into account the values of the kinetic parameters ~c'1 and K~ 
given by (2.4) and that B = 1.0 M, from (3.4) we have e = 4.6 x 10-6. So the 
system (3.1) involves, in all integration domain, two time scales, i.e., 9?4 is a 
quick variable compared to the rest of the variables. Applying Tikhonov's 
theorem, we can substitute the last differential equation in (3.1) by the 
algebraic equation 

- -9?324  q- 9?3 = 0 (3.5) 

from which one gets 

9?4 = 1 (3.6) 

Substitution of (3.6) into (3.1) leads to 

d x  1 
- Yq22 

dr 

d x  2 
-- 971 972 -[- 3.~ 3 (3.7) & 

d x  3 
& = 971972- 223 

Moreover, (3.7) shows that the variables )C1, 2 2 ,  and 9?3 fulfill the 
relation 

d971 @ d973 
+ 2 + 3 ~ = 0 or (3.8a) 

971 + 29?2 + 39?3 = g (3.8b) 

where the constant ~ can be determined from the initial conditions 

g = (2,)0 + 2(22)0 + 3(9?3)0 = (K']/g;-/~)[(z](1) 0 -{- 2(-'~2) 0 -~ 3 ( X 3 ) o ]  (3.9) 
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Thus, the system (3.1) contains effectively only two independent  
variables. If  we choose 21 and 22 as such variables, (3.7) becomes 

d x  1 
m . 2 1 2 2  

dz 

d x  2 
- -  = c - xl - 222 - 2 1 2 2  & 

(3.1o) 

Equat ions  (3.10) admit  two steady-state solutions 

(s = 0 (22)s~=g/2 and (3.1l) 

(21)ss = 5  (22)ss=O (3.12) 

The linear stability analysis (2~ leads to the conclusions summarized in 
Table I I I  for bo th  states: the system possesses only one asymptotical ly 
stable steady-state given by the values (3.11). 

Figure 3 illustrates graphically the time evolution of the dimensionless 
variables 21 and 22 to this final stable steady state. They have been 
obtained by numerical integration of (3.10) with the initial condit ions 

(21)o = 17.0 

(22)0 = 1.36 x 10 -3 (3.13) 

( 2 3 )  0 = 2 . 3 8  X 1 0  - 7  

which correspond to the initial condit ions used in the integration of 
Epstein's model. In this figure, the scaling of the variables and the time 
clearly shows the existence, in this simplified model,  of  an induct ion period 
which is essential to give rise to the explosive phenomenom.  

Table III. S ta t ionary  Sta tes  of (3 .10 )  ~ 

Solution T A T 2 - -  4A Stability Character o)1, 0) 2 

(3~ l 1 ) - + + Stable Node Real, negative 
(3.12) - - + Unstable Saddle Oposite sign 

a T and A are, respectively, the trace and the determinant of the coefficient matrix in the 
corresponding linearized system. 0)1 and 0) 2 are the poles of the characteristic equation. 
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Fig. 3. 
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4. STOCHASTIC  ANALYSIS  

The phenomenological description shows the existence of a time inter- 
val during which the system evolves violently (cf. Fig. 3). It is expected that 
this phenomenon counteracts the scaling of the fluctuations by the inverse 
of the size and produces a chaotic regimen dominated by stochastic effects. 

In order to study this point, we regard the chemical reactions (2.3) as 
a birth and death process in the number of particle space. 

Like in the deterministic analysis, we assume constant the number 
density of the particles A and B. Moreover, from (3.8b) and (3.6), we can 
write for the number of particles X3 and X4 

X3 = ( C -  Xl - 2 X 2 ) / 3  (4 .1 )  

X 4  = N A  V ~  4 = tc~AB t~--;2 NA V (4.2) 

where NA is the Avogadro number, V is the volume, and C is given from 
the initial conditions 

C=(X1)o+2(X2)o+3(X3)o=NAV[(2,)o+2(Xz)o+3(X3)o] (4.3) 
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Choosing the number of particles Yi and X2 as independent extensive 
variables, the master equation for the probability distribution P(X~, Y2; t) 
of the system (2.3) is 

dP(X~, )(2; t) 

dt 
= v, B [ ( &  + 1)(Y2 + 1)P(X,  + 1, X2 + 1; t ) -  Xi X2P(Y,, X2; t)] 

-]- V2 [flff4(X-3 -~ 1 ) / ' ( X , ,  2(2 - - 2 ;  t) - -  X4X3P(X-  , , X2; t ) ]  

+ v3AB[ (X3+I )P(X~ ,Y2 - -a ; t ) - -X3P(XI ,X2 ; t ) ]  (4.4) 

where the reaction parameters vi are related with the kinetic parameters ~'i 
by 

V,=N2V2 V2=NA V v 3 N2AV 2 (4.5) 

Taking into account (4.1), (4.2), and (4.5), (4.4)becomes 

dP(Xl, X2; t) 
- 2 ( X ,  + I, X2+ I )P(X,  + I, X2+ I;t) 

dt 

+ lt(Yl- 1, Y2-  1)[P(X1, X2- 1; t)+P(Y~, X2-2; t)] 

- [)~(X~, X2)+ 2#(X~, X2)] P(XI, X2; t) (4.6) 

where 

�9 ~ (Xl ,  X2) ~-- v 1BXIX2 (4.7a) 

/~(Xx, X2) = v3AB(C-  X1 - 2ii2)/3 (4.7b) 

From (4.5) and (4.6) the extensive character of these transition rates 
becomes clear. 

In order to investigate the strength of the fluctuations we derive the 
moment equations. (:) From (4.6) we obtain for the first and second 
moment evolutions 

d( Y(t >/dt= -v i  B< Xl X2 > 

d( X2 >/dt = v 3 A B C -  v3AB( X1 ) - 2v3AB< X2 > - v, B(  J(, X2 ) 

d( X~ >/dt = v, B< X, Jr2 ) - 2Vl B< X~l X2 ) 

d( X~2 )/dt = �89 3) - ~v3AB(X, ) + 2v3AB(C-  2)<X2 ) 

- 4v3AB(X~2) + ( V l B - 2 v 3 A B ) ( X I X 2 )  - 2v3<X~X~2) 

d< X1X2) /dt= �89 1)(X1 ) -- v3AB( X~I ) + (vi B -  2v3AB)< X, X2) 

- v,B(X~X2)--v~B<X~X~2> (4.8) 
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Let us introduce the dimensionless variables Xl, x2, and 

Y1 = K' 
Xl = y - ~ X l  K;~JTI =~1 

V 1 K r 

r = v3ABt = ~ ; A B t  

(4.9) 

and the dimensionless parameters 

v ~ C ~c', 
= - _ [)?~ + 2)?2 + 3533 = ~ (4.10a) 

v3A ~c~A 

vl _ ~c'1 1 (4.lOb) 
fl = v3A ~c'3A N A V 

In terms of xl,  x2, r, e, and fi, the coupled differential equations (4.8) 
become 

d < x l )  
- - -  < x , x ~ )  & 

d<x2> 
dz = ~ -  ( x , ) - 2 < x 2 ) -  {x,x2) 

d(x~) 
& - - - ~ < x ~ x 2 )  -2<x~x2> 

d(x~)=~ 5 - 3  - S f i < x , ) + 2 ~  1 - 2  (x2> (4"111 

-4<x22)  + 2  ( f - ~ - 1 ) < X l X 2 > - 2 < x 1 x 2 )  

d ( X l X 2 ) = ~ - ( 3 - ~ ) &  3 { x l ) - ( x ~ ) + 2 ( 2 - ~ - l ) < x l x 2 )  

- < x f x 2 ) -  < x l x ~ )  

where the dependence of the evolution on size appears through the volume- 
dependent parameter fi given by (4.lOb). In terms of fluctuations 

(~xi=xi - ( x i )  ( i=  1, 2) (4.12) 
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neglecting the higher than second-order terms in the fluctuations, one can 
write 

(x ix j )  = ( x i ) ( x j )  + (6xi6xj) (4.13) 

( x y x ; )  = ( x ~ } ( x j }  + ( x j ) ( ~ x y }  + 2 ( x , ) ( 6 x , 6 x ; )  

where i, j = { 1, 2 }. 
Substituting relations (4.12)and (4.13)into (4.11)one gets 

d(xl  ) 
& 

d(x2 ) 
- o: - ( X l )  - 2(x2 } - ( x l )  ( x 2 )  - ( & l  6x2 } 

d'r 

d(6x~}  
d'c =fiLxl>(x2)+fi((~xl  6 x z ) - 2 ( x 2 ) L ( S x ~ ) - 2 ( x t ) ( c ~ x t  (~x2) 

d<6x2) ( ~) 5 + lJ ( x l ) ( x 2 ) - 4 ( g ) x ~ )  

d(~Xl g~x2} 
fl ( x l } + - - ( x l } ( x ~ } - ( , ~ x ~ } + 2  - 1  ( & , 6 x 2 }  

d'c 3 o: 

- ( x l ) ( 6 x ~ ) - ( x l ) ( 6 x l  (Sx2)- (x2)( (Sxl  6x2) (4.14) 

Figure 4 summarizes the numerical integration of (4.14) for a volume 
V= 10-9cm 3 and the initial conditions (3.13) for (x~(0)} and (x2(O)), 
and (,~xi(0)6xj(0)} =0  with i , j=  {1, 2}. 

By fixing the kinetic parameters and the initial concentrations the role 
of the fluctuations during the explosion can be linked to the size of the 
system. Figure 5 shows the time variation of the second-order variances 
((5x2~) ~/2 (i= 1, 2) for three values of the volume, One can see that, within 
the explosion time interval, the variances present a peak whose maximum 
value increases as volume decreases. Therefore, for sufficiently small 
volumes, the fluctuations can attain values comparable to the mean (xi}. 
Specifically, one has 

(i) For volumes greater than 10 -6 cm 3 in the explosion time inter- 
val, the second variances (6x2} ~/2 are negligible compared with 
the mean values (x/) ,  and the system follows the deterministic 
evolution. 



534 Mauricio and Velasco 

GjA,.-~ 

V 

15.0 

10.C 

5.( 

0.( 

15,C 

lO.C 

5.C 

0.C 

0.0 

I i 

�9 0 5 . 0  I 0 . 0  

T 

! 

15.0 20.0 

7 . 5  

5 . 0  ACXl 
• 
v 2 . 5  

O.C 

0 ,  

1 l I 

/ 
I 1 1 

5.0 i0.0 15.0 

T 

20.0 

I 

5 . 0  

Fig.  4 

/_< 
i0.0 

I 
, 1 

1 5 , 0  20.0 

A 

~o 
V 

6.0 

4.C 
CJA04 

X 

2.C V 

0.C 

0.0 

I 1 I 

5.0 I0.0 15.0 

- -  l I I 

0 . 0 ~  

- 2 , 0  

- 4 . 0  

- 6 , 0  

I 1 I 
0.0 5 . 0  I0.0 1 5 . 0  20.0 

T 

S o } u t i o n  o f  ( 4 . t 4 )  [or a v o l u m e  V =  10 9 c m ~ .  

20.0 

(ii) For values of the volume from 1 0  - 6  to 10 9 c m  3, the strength of 
the fluctuations in the explosion time interval can reach values 
comparable to the mean but still the functions (xi(t)> and 2i(z) 
essentially coincide (compare Figs. 3 and 4). 

(iii) When the volume is smaller than 10 9 c m  3, the strength of the 
fluctuations can be very important during the explosion, and the 
system exhibits a markedly chaotic behavior. 

5. CONCLUSIONS 

We have constructed an idealized model which captures the 
mechanism of the isothermal explosion involved in Epstein's model for the 
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Fig. 5. Time evolution of the second variances <6x~) ~/2 and <6x22) 1/2 obtained from 
numerical integration of (4.14) for different values of volume V. 

oxidation of ferrous ion by nitric acid. This leads to a nonlinear system 
involving four variables, from which only two turned out to be indepen- 
dent. 

The deterministic analysis of the simplified scheme (2.3), with the 
initial conditions (3.13), shows that after a slow induction period a highly 
nonlinear and violent evolution appears, during which the system evolves 
quickly to the unique attractor (3.11). 

The stochastic analysis shows that, during the explosion interval, the 
fluctuations are significantly enhanced. The numerical results establish that, 
for sufficiently small volumes, such fluctuations become comparable to the 
mean values. It should be very interesting to try to show experimentally the 
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existence of these fluctuations. We think that this is feasible if one makes 
use of laser spectroscopic techniques which can accommodate  volumes of 
the order of those considered in this work ( ~  10 -9 cm3). 
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